
Syntactic-Level Ontology Integration Rules for E-commerce

Borys Omelayenko

Vrije Universiteit, Division of Mathematics and Computer Science
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

www.cs.vu.nl/~borys
borys@cs.vu.nl

Abstract
Electronic marketplaces, or e-commerce portals, bring
together many online suppliers and buyers. Each individual
participant can potentially use his own format to represent
the products in his product catalog, and mapping between
them becomes non-trivial. Complicated products require
knowledge-intensive descriptions, or ontologies, and
catalog integration shifts to integration of product
ontologies. The industrial experience analyzed in the paper
shows that in some cases the marketplaces require
syntactic-level integration of product ontologies, in which
the integration rules are created and updated
(semi)automatically. Ontology integration tools that satisfy
these requirements have not yet been developed, and
accordingly we sketch a framework for automated ontology
integration that is able to fulfill these requirements.

1. Introduction

Electronic marketplaces, or e-commerce portals, bring
together many online suppliers and buyers. Each
individual participant can potentially use his own format
to represent the products in his product catalog.
Complicated products require knowledge-intensive
descriptions, or ontologies. Thus, catalog integration
requires integration of product ontologies. If a
marketplace mediates betweenn suppliers andm buyers,
then it must be able to map each of then suppliers’
catalogs into m buyers’ formats performing nxm
mappings. The numbersn and m can be high enough to
make the problem of creation and maintenance of these
catalog integration rules non-trivial.

Management of product ontologies and product catalogs
occur as a subtask of knowledge management done by the
companies. In consequence, it becomes an important part
of the ontology-based knowledge management tools,
which are now under development within the
OntoKnowledge project (www.ontoknowledge.org).

The three types of e-commerce mediation: Business-to-
Business (B2B), Business-to-Customer (B2C), and
Customer-to-Customer (C2C) differ in terms of number of
catalogs, speed requirements, and integration quality.

Copyright ©2000, AmericanAssociation for Artificial Intelligence
(www.aaai.org). All rights reserved.

These differences produce different requirements for
product integration.

Inference mechanisms developed by the knowledge
engineering community provide a standard way to
integrate the ontologies. But in B2C and C2C areas the
number of catalogs can be in the same order as the
number of customers. This makes inference relatively
expensive and no longer efficient.

In this paper we consider the problem of ontology
integration applied to the task of product integration. In
section 2 we survey the requirements for ontology
integration that come from the industries; and in section 3
we survey the existing tools for ontology integration. The
paper continues with a sketch of the automated ontology
integration tool in Section 4, before arriving to final
conclusions.

2. The Requirements for Ontology Integration

The three types of electronic commerce, B2B and B2C
extensively discussed in (Fensel 2001), and C2C provide
different requirements for the integration of product
ontologies as surveyed below.

B2B
In the B2B area the numbers of formatsn and m are
relatively small, because both correspond to the number of
companies. Once created and verified, a rule will be
applied many times to a large number of product
descriptions. These rules can be constructed manually and
must be carefully verified. This gives us the first
requirement:
(1) The rules must be understandable by a domain
specialist, who may not be a technical expert.

B2B suppliers provide their catalogs in a syntactically
unified way, where XML becomes a de-facto standard,
and several standards for product descriptions have
already been proposed (Li 2000). This brings us to the
following requirement:
(2) The rules must be able to translate XML
representations of product catalogs.

B2B participants tend to sell more and more
complicated products. As a result, the corresponding
product ontologies become very complicated. Integration

Peter Systembeheer
In: Proceedings of The 14th International FLAIRS Conference (FLAIRS-2001), Key West, FL, May 21-23, 2001, (c) AAAI Press

is not only required at the instance level, but at the
schema level as well:
(3) The rules must be able to deal with ontology schemas:
classes, attributes, inheritance, etc.

Electronic product catalogs can be used not only for
trade mediation, but also to improve the supply chain used
by a company. The paper (Baron, Shaw, and Bailey 2000)
discusses implementation of e-catalogs to support the
information flows in the supply chain used by the
company, its suppliers and customers (B2B procurement)
and arrives at the following requirements for product
ontology integration:
(4) It must perform integration with the representations
used by the legacy systems, which usually have a flat
structure and based on the database technology.
(5) The integration must be compatible with security
services used in the company.

B2C
The B2C area assumes participation of a large number of
individual customers, which can easily reach the order of
millions. The product catalogs are customer-oriented and
tend to use textual and graphical representation of the
products rather than formalized XML descriptions.
Accordingly:
(6) Catalog integration rules must be able to interact with
wrappers that will translate ill-formalized descriptions
into XML.

Many of the requirements are necessitated by the
presence of many individual customers and are similar in
both B2C and C2C areas.

B2C and C2C
In C2C mediation, suppliers and buyers are represented by
individuals, who sell or buy goods. This means that the
number of participants can be very high (it can even reach
millions) while each participant can use his own format to
represent his product. They tend not to use XML, but
graphical or textual representations. This imposes special
requirements for catalog integration, linked with web site
development and customer assistance.

Web-site development for e-business already feels the
need to customize product descriptions to the views used
by the customers (Santesmases et al. 2000) and requires
the integration process to be:
(7) Automatic because each customer requires special
integration, and
(8) Easily adaptable to changes in data formats.

The rapidly growing number of suppliers available on
the Web has inspired the development of intelligent sales
assistants for the Web, able to consult the customers and
guide them through the maze of product catalogs and
online shops (Traphoner 2000). These service bring with
them the following requirements:
(9) Product ontologies must be standardized on the
syntactical level with XML.
(10) Product ontologies must be ‘derivable’, e.g.
composed from its technical and market descriptions.

(11) Specific product ontologies must be integrated with
general domain ontologies.

For its catalog administration tool, Cohera Corp.
(Cohera 2000) works with two different types of catalogs.
Static catalogs contain slowly changing information that
is uploaded and updated periodically and, possibly by
several vendors. Meanwhiledynamic catalogs that can
change on the fly and typically reside at each seller’s
catalog system. This requirement is quite unusual for
manual of semiautomatic knowledge management.

The requirements (Cohera 2000) for the integration
system are as follows:
(12) It must be able to integrate the ontologies from
multiple and remote sources, where meta-models and
inference can be difficult.
(13) Static ontologies have to be integrated together with
dynamic ontologies.
(14) It must be able to deal with different expressiveness
in the ontology representation languages.
(15) Integrated ontologies will require creation of new
categories over the source ontologies, which can lead to
generation of the descriptions for ‘virtual’ products.

This requirement is also unusual for knowledge
management: creation of a new super-class must be well-
justified because it has to correspond a product (even if it
is virtual).
(16) The rules and patterns used to integrate the
ontologies must be able to evolve and easily adapt to
changes in usage patterns and business relationships.

Thus, the B2C and C2C areas require simple and
highly automated techniques at the class-attribute name
level. These requirements differ slightly from expressed by
(Ng, Yan and Lim 2000), who argue for the development
of a simple, scalable and fully automated schema
integration technique for B2B and B2C e-commerce.

3. Existent Ontology Integration Tools

In this section we survey the tools and algorithms
available to the industry in the field of ontology
integration. In principle we can perform two types of
concept integration: concept-level integration, and
syntactical-level integration. Concept-level integration
requires inference over the domain ontology to make a
decision about integration of a particular pair of classes.
In addition, it also requires an integration ontology that
captures the knowledge about the methods able to
integrate the classes. Both ontologies are not available
explicitly and so the tools require a human expert to make
these decisions.

Syntactical integration defines the rules in terms of
class and attribute names used in the ontologies to be
integrated. Such integration rules are conceptually blind
but are easy to develop and implement. This level is
widely used in the database community for database
schema integration and has proved to be sound (Batini,
Lenzerini, and Navathe 1986).

Model-based semantic integration (Bowers and
Delcambre 2000) works on a level of semantic models that
provides more rationale and flexibility for rules. However,
in the B2C and C2C areas customer-oriented
representations often come without their underlying
models. Furthermore, these algorithms presently
concentrate on manual ontology integration and provide
no method capable of integrating the ontologies
automatically.

Two ontology integration tools have been developed in
the knowledge engineering community: Chimaera
(McGuinness et al. 2000) and PROMPT (Noy and Musen
2000). Both tools support the merging of ontological
terms (class and attribute names) from varied sources.
During the class merging process they present the user
with pairs of classes whose names are similar enough and
might represent either the same class from different input
ontologies, or might require taxonomic edition to make
one a subclass of the other. A human expert then decides
what integration operation to apply to the pair of classes,
and the system guides him to the next pair. PROMPT
provides more automation in ontology merging. For each
ontology merging operation PROMPT suggests the user to
perform a sequence of actions on copying the classes and
their attributes, creating necessary subclasses and putting
them in the right places in the hierarchy. The action
sequences are hard-encoded into the system, but
experiments showed that they perform very well.

In both approaches an expert still has to decide which
ontology integration operation to perform for each pair of
classes. This does not correspond to the needs of the
industries that require automatic ontology integration.

Recently the database community provided the
algorithm for (semi)automatic database schema
integration (Palopoli et al., 2000). This paper presents two
techniques able to integrate and abstract database
schemes. These techniques assume the existence of a
collection of relations between the schema attributes, like
synonymy, homonymy, hyponymy, a dictionary of
overlappings, and a type conflict dictionary. Normally this
set of dictionaries does not exist and its construction
requires a large investment of time and human effort.
Natural language ontologies, like WordNet (Fellbaum
1998) provide a valuable information source for creation
of some of these dictionaries and it is essential that the
ontology integration algorithm make use of them.

4. Automated Ontology Integration Tool: the
First Sketch

The product concepts are represented with classes that
correspond to the products or classes of products, and with
class attributes that correspond to the product properties.

The input of the algorithm is two sets of classes, each of
which corresponds to one ontology to be integrated; the
set of class names with theSubclassOf relation between
them. Each class has a set of attributes associated with the
class, where each attribute is represented by its name.

The algorithm has to integrate two ontologies1O and
2O , where the first ontology contains the set

},...,{ 111 nccO = of classes, and the second has the set
},...,{ 212 nccO = of classes. Each class ic has the

associated set of its attributes },...,{ 1 mii aaA = . Within
this section we will use ic and ja to denote the name of a
class or an attribute, correspondingly, andiC to denote
the class, or the concept.

Naturally, humans perform incremental ontology
integration, comparing the classes one by one, opposite to
the batch model, where the expert is supposed to analyze
all the classes at once. For automatic integration we have
a choice either to perform incremental or batch
integration. We will consider incremental integration in
this paper, but the batch integration model also has to be
considered. From the root of 1O the algorithm runs an
exhaustive (breadth-first or depth-first) search through

1O . On each iteration it compares the current class1c
from 1O with all classes from ontology 2O .
Consequently, for each pair of classes 11 Oc ∈ and

22 Oc ∈ the algorithm performs a comparison step
described in the next three subsections: it compares the
class names, then compares the sets of attributes
associated with the two classes, and then compares
individual attributes of the classes.

4.1. Integration operations
The integration rules will lead to one of the integration
operations to be performed. Until now no unified set of
operations has been proposed. The operations available in
the literature (Sofia Pinto et al. 1999) are quite general
and cannot be used for automated integration. The closest
approach to ours, PROMPT, uses the following five
merging operations: merge classes, merge slots, merge
bindings between a slot and a class, perform a deep copy
of a class (with its subclasses and referring classes),
perform a shallow copy of a class (only the class itself).

In our framework we can use the following operations:
- Merge classes with the union of their attributes;
- Create a superclass over the pair of classes with the
attributes that both classes have in common;
- Rename the classes to fix class name collision;
- Mark the classes asDisjoint;
- Add a subclass-of relation between a pair of classes;
- Remove a subclass-of relation between a pair of classes.

4.2. The Framework for Automated Ontology
Integration
During the comparison step we generate the hypotheses
about the integration operation required by the pair of
classes. Each syntactical feature of the classes, i.e.
similarity of their names, can produce a hypothesis about
which operation to apply. It is quite possible that several
features will produce several different hypotheses. For
example, suppose that the classPrinter from 1O with the
attributes Technology, Resolution, Interface must be
compared with the classThe_Printer from 2O that
describes the device with the attributePrintingTechnology.

The comparison of the class names will produce the
hypothesis that the classes should be merged because their
names are semantically equivalent, but the comparison of
their attributes might indicate thatThe_Printer must be
defined as a superclass ofPrinter.

4.3. The Algorithm
The algorithm assumes that some kind of domain
ontology of terms exists. It must represent the dictionary
used in the domain to recognize the ‘synonyms’ relation
(e.g. Monitor and Display) and the ‘is-a’ relation between
the language concepts (e.g.General_Printer is more
specific thanLaser_Printer).

Name preprocessing.Before comparing the ontologies
some lexical naming confusions must be eliminated at a
name preprocessing stage. At this stage for each class
name or attribute name the algorithm will:
• Remove the articles, e.g.The_Printer which is equal to

Printer;
• Remove encoding prefixes included by a programmer,

e.g. strPrinterName which indicates that the attribute
PrinterName hasstring type.

• Separate several words merged to create an identifier,
e.g.Laser_Printer, LaserPrinter, and evenlaserprinter.

An ad-hoc solution that exploits language ontologies like
WordNet (Fellbaum 1998) or its domain-specific
modifications, can be easily developed for this stage and
will perform very effective.

Comparing Class Names.On this stage we compare the
names 1c and 2c , as listed in Table 1. The symbols class
names 1c and 2c are literally compared with the
operations=, ≠, and substring inclusion⊂ as shown in
lines (1)-(3). Class conceptsiC are compared in lines (5)-
(7) with the operations > that refers to a “more general
than” relation,≈ that refers to a “synonymous” relation,
and || that stands for a “disjoint” relation, i.e.
laser_printer, ink_printer, matrix_printer.

We expect that case (8) will occur most often: the
algorithm compares each possible pair of classes from the
pair of ontologies, and most of the pairs will not require
any operations.

Comparing Attribute Sets. After comparing class names
we can compare attribute names. Generally, attributes
provide more information than the class name. First, the
algorithm takes a look at the attribute sets, and then
continues by comparing individual attributes. Possible
situations with the attribute sets1A of the class 1c and 2A
of the class 2c together with the generated hypotheses are
listed in Table 2.OperatorA used in line (1) returns the
number of all attributes of the class, including the
attributes that were inherited from the superclasses.

Comparing Attributes. Comparing individual attributes
gives us additional hypotheses about the integration
operation to use. At this stage the algorithm passes each
possible pair of attributes 11 Aa ∈ and 22 Aa ∈ that belong
to the classes 1c and 2c correspondingly. Their

Table 1. The hypotheses derived from comparison of the class names
Condition Description Hypothesis

(1) 21 cc = The names are literally equal, then Merge 21,CC
(2) 21 cc ≠ else
(3) 21 cc ⊂ 1c is a substring of 2c Make 2C a subclass of 1C
(4) else use domain ontology:
(5) 21 CC ≈ Synonymous classes Merge 21,CC
(6) 21 CC > 1C refers to a more general concept than2C Make 2C a subclass of 1C
(7) 21 ||CC 1C and 2C are disjoint Mark 1C and 2C as disjoint
(8) else No action

Table 2. The hypotheses derived from comparison of the sets of attributes
Condition Description Hypothesis

(1)
21 AA > 1C is more detailed than 2C . Restriction: 2C can not be a

subclass of 1C
(2) 21 AA ⊂ All attributes of 1C are included in 2C Make 2C a subclass of 1C

Table 3. The hypotheses derived from comparison of the individual attributes
Condition Description Hypothesis

(1) 21 aa = The names of the attributes are literally equalDuplicate class comparison
hypothesis

(2) 21 aa ≠ else
(3) use domain ontology:
(4) 21 aa ≈ The names are synonymous Duplicate class comparison

hypothesis
(5) 21 aa ⊂ 1a is a substring of the name of2a No action
(6) else Just two different attributes No action

comparison gives several additional hypotheses as listed
in Table 3.

Recently developed ontology representation languages
(i.e. RDF (Lassila and Swick, 1999)) includesubslot-of
relation between the attributes and allow to build
hierarchies of attributes similar to class hierarchies. Full
integration of such ontologies will also require integration
of attribute hierarchies, and extending of Table 3 with
new cases.

Making the Decision. For each pair of classes the
algorithm will generate the set of possible integration
operations to be performed over the pair of classes (the
hypotheses). The algorithm generates all possible pairs of
classes for comparison, and we expect that most of the
pairs will require no integration. To find the class 22 Cc ∈
that has to be merged with the class 11 Cc ∈ the algorithm
will pass all 2n classes from 2C and mn ⋅2 attributes,
where m is the average number of attributes of a class
from ontology 2O , and has to perform only one merging
operation. For a realistic case of 502 =n and 7=m this
will give 350 tests, that can lead to up to 350 hypotheses.
The decision-making step must select only one integration
operation out of these hypotheses, and lots of ‘noisy’
hypotheses must be ignored.

The opinion aggregation algorithm has a user-
adjustable threshold: the number of generated hypotheses
must exceed some predefined threshold for the algorithm
to perform an integration operation. The hypotheses are
aggregated with simple voting, a method with a long
history that approved its robustness in many application
areas. Thus, if the comparison of two classes from a pair
produces three hypotheses ‘merge’ and five hypotheses
‘make 1c a subclass of 2c ’ then the algorithm will
perform the second operation.

5. Conclusions

The paper shows that, in the case of B2C and C2C, the e-
commerce requires syntactic-level integration of product
ontologies, where the integration rules are created and
updated (semi)automatically. There are no ontology
integration tools that satisfy these requirements, and the
closest approaches force the user to make a decision how
to integrate a certain pair of classes. The proposed
integration algorithm attempts to automate this decision-
making process.

Acknowledgement. The author would like to thank to
Dieter Fensel for helpful discussions and comments on
this paper.

References

Baron, J.; Shaw, M.; Bailey, A. 2000. Web-based E-
catalog Systems in B2B Procurement,Communications of
the ACM43(5):93-100.

Batini, C.; Lenzerini, M.; Navathe, S. 1986. A
comparative analysis of methodologies for database
schema integration,ACM Computing Surveys18(4):323-
364.

Bowers, S.; Delcambre, L.; 2000.Representing and
Transforming Model-Based Information. In: Proceedings
of the Workshop on the Semantic Web at ECDL-00,
Lisbon, Portugal, September 21.

Cohera Corp. 2000.E-Catalog Integration for E-Markets.
www.cohera.com.

Fellbaum, C. 1998.WordNet: An Electronic Lexical
Database. The MIT Press.

Fensel, D. 2001.Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce. Springer-Verlag,
Berlin, 2001.

Lassila, O.; Swick, R. 1999. Resource Description Frame-
work (RDF) Model and Syntax Specification,W3C
Recommendation, Feb. 1999; available online at
http://www.w3.org/TR/REC-rdf-syntax/.

Li, H. 2000. XML and Industrial Standards for Electronic
Commerce, Knowledge and Information Systems
2(4):487-497.

McGuinness, D.; Fikes, R.; Rice, J.; Wilder, S. 2000.An
Environment for Merging and Testing Large Ontologies.
In: Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and
Reasoning (KR2000), Breckenridge, Colorado, 12-15
April.

Ng, W.; Yan, G.; Lim, E. 2000, 'Heterogeneous Product
Description in Electronic Commerce', SIGecom
Exchanges, Newsletter of the ACM Special Interest Group
on E-commerce1.

Noy, N.; Musen, M. 2000.PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment. In:
Proceedings of the AAAI-00 Conference, Austin, TX.

Palopoli, L.; Pontieri, L.; Terracina, G.; Ursino, D. 2000.
Intensional and Extensional Integration and Abstraction
of Heterogeneous Databases,Data & Knowledge
Engineering35:201-237.

Santesmases, J.; Lopez, D.; Fernandez, Y. 2000.SPGC: A
Personalized Server and Content Manager. In: E-
business: Issues, Applications and Developments.
Proceedings of eBusiness and eWork2000 Conference
and Exhibition, Madrid, Spain, 18-20 October.

Sofia Pinto, H.; Gomez-Perez, A.; Martins, J. 1999.Some
Issues on Ontology Integration. In: Proceedings of the
IJCAI-99 workshop on Ontologies and Problem-Solving
Methods (KRR5), Stockholm, Sweeden, 2 August.

Traphoner, R. 2000. WEBSELL: Intelligent Sales
Assistants for the World Wide Web. In: E-business: Issues,
Applications and Developments. Proceedings of eBusiness
and eWork 2000 Conference and Exhibition, Madrid,
Spain, 18-20 October.

