
RDFT: A Mapping Meta-Ontology for Business Integration

Borys Omelayenko

Division of Mathematics and Computer Science
Vrije Universiteit, De Boelelaan 1081, 1081hv,

Amsterdam, The Netherlands
borys@cs.vu.nl

Abstract. To create new added value the Semantic
Web has to provide new means for business inte-
gration enabling open world-wide cooperation be-
tween various enterprises. Existing business inte-
gration techniques assume the enterprises having
similar conceptual models of the objects being ex-
changed, and this limits their application areas. The
Semantic Web needs to possess a technique capa-
ble of mapping different conceptual models in the
business integration context. We propose a map-
ping meta-ontology built on top of RDF Schema
using previous experiences in modelling mappings,
specifics of RDF Schema and business integration
tasks.

1 Introduction

Historically business integration has been performed within
the Electronic Document Exchange1 (EDI) paradigm via
costly Value-Added Networks (VANs) that use private ex-
change protocols and provide full range of network services
for large companies. Each EDI implementation requires a
substantial labor effort to program and maintain, and this
makes EDI unacceptable for small and medium enterprises
searching for cheap and easy solutions. In this respect the
World Wide Web and its successor the Semantic Web pro-
vide open standard representation means for modeling busi-
ness information on the Web and allowing development a
new generation of integration solutions.

At present time integrating two companies basically
means integrating their database inputs and outputs available
as EDI or XML documents. The databases are either accessi-
ble directly or via the Internet and with formal specification
of possible operations on them are now often referred as Web
services.

A number of toolkits have been developed to help the user
in performing such kind of integration. The MS BizTalk2

tool supports the integration of different databases accessi-
ble directly via SQL (or via EDI documents and appropriate
wrappers). The documents pass through several steps. First,
source documents are transformed into XML representation
by means of wrappers. Second, the source XML schema is
mapped to the target XML schema with the BizTalk Mapper
tool that provides a user interface for mapping and generates
XSLT scripts able to translate instance XML documents ac-
cording to the maps. Finally, the resulting database record or
EDI document is created from the target XML document.

Similar tasks are performed during the integration of dif-
ferent web services described in Web Service Definition

1 www.x12.org
2 www.biztalk.org

Language3 WSDL. In each message the service is expected
to receive or generate an XML document according to the
XML Schema specified in the service description. Capes-
tudio4 contains an XML mapping tool helping the user to
map two XML schemas and automatically generate the cor-
respondent XSLT file, similar to the Biztalk’s Mapper. In
addition, it provides advanced concerning working with on-
line services and WSDL service descriptions (the same func-
tionality is achieved with wrappers and SQL server in the
BizTalk’s database integration scenario).

The new generation of tools, e.g. the Unicorn5 toolkit, uses
ontologies as structured vocabularies that help the users in
developing the mapping rules. In this case the user maps doc-
ument’s elements to ontological concepts and uses the hier-
archy of ontological terms to navigate the elements. These
terms are used to provide mediating names for database at-
tributes, and do not constitute a mediating conceptual model.
For example, it cannot support the case when in the source
database a single object is stored in a single record while in
the target database the same object is splitted up into several
records.

At their present status the integration tools help in speci-
fying the maps between quite similar conceptual models and
require substantial programming effort for aligning different
conceptual models. We aim at creation of an architecture that
allows mapping different conceptual models via a mediating
conceptual model.

The paper is organized as follows. The business integration
task is outlined in Section 2 with typical conceptual mod-
els that need to be mapped, the mapping meta-ontology for
aligning conceptual models represented in RDF Schema is
discussed in Section 3, and the mapping tool is shown in
Section 5, followed by conclusions and future research di-
rections.

2 The Integration Task

Different companies play different roles in business collabo-
rations and hence develop different (and often partial) mod-
els of business objects. Each document is specialized for a
certain operation and represents an aggregation of properties
of several objects specially grouped to support the operation.
There does not exist any single exchanged document that rep-
resents a complete model of an object.

The mediator needs to aggregate these partial models to
construct the mediating model and perform document inte-
gration via the aggregated mediating model rather than di-
rectly translate the documents.

3 http://www.w3.org/TR/wsdl
4 http://www.capeclear.com/products/capestudio/
5 http://www.unicorn.com/

2

The mediating concepts might have the following features:

– All available knowledge about the objects is coming
from input and output messages.

– The model must represent all the objects being ex-
changed and be sufficient for producing all the necessary
documents required for interchange.

– The objects tend to change in time, and these changes
are often marked with the timepoints of the documents
or message validity times indicated in the messages.

– The model must evolve on-line with new customers
coming to the mediator and bringing new views of the
concepts they are willing to exchange.

– The documents are sometimes assigned to events in a
non-trivial way, and a substantial effort may be needed
to link the documents to workflow activities [1].

We treat the enterprise integration task as a service inte-
gration tasks. We assume that the enterprises, which we are
going to integrate, are represented as Web services specified
in WSDL. For each of them WSDL specifies the messages
that are expected and/or produced and XML Schemas of the
documents being transferred with the messages. These mes-
sages are produced by the company’s ERP system [2], and
the logic behind them is not accessible to the integration ser-
vice, and even not important for the integration.

Accordingly, the integration service interacts with the
world via messages (events) described in WSDL that have
XML documents attached, which structure is specified in the
XML Schemas included into WSDL descriptions.

2.1 Getting Conceptual Models from XML structures

Each message produced or expected by a company has
an XML Schema specifying its structure. XML DTDs and
Schemas are traditionally regarded as structural information
that possesses no formal semantics, however they clearly pre-
serve a large piece of knowledge about the domain objects
they represent. A well-defined XML structure captures most
of part-of relations between the domain objects and/or liter-
als.

DTDs, which are much less expressive than XML
Schemas, can be easily converted to reasonable conceptual
models for the objects being described in the documents. A
rule-based approach for extracting conceptual models from
DTDs [3] provides a list of heuristic rules of two types: lex-
ical rules that generate a taxonomy based on the inclusion
relationship between XML tag names and restructuring rules
that transfer XML trees into a conceptual model handling ob-
ject nesting, cardinality constraints, etc.

Let us consider a DTD sample

<!ELEMENT A (B,C,(D|E))>

where all the elementsB, C, D, andE are defined as literals
(#PCDATA) and show how it may be converted to a con-
ceptual model with the a slightly modified version of rules
from [3].

ExpressionD|E is processed with ruleC(Choice) that
creates a new elementcD_E. ElementsD and E are con-
verted to lexical conceptscD and cE that are connected
to cD_E with relations D and E depicted in Figure 1.
A composite elementA is converted to conceptcA (rule

CE-Composite Element). Each of the elementsB and
C is converted to a literal conceptcB or cC respectively (rule
SCE-Simple Component element) and relationsB,
C, and D_E are added. More complicated examples incur
other rules concerning repeating elements, cardinality, and
complicated composite DTD elements.

cA cD _E

cB cC cD cE
B C D E

D_E

Fig. 1.A fragment of a conceptual model constructed from DTD

A similar algorithm has been proposed for converting
XML DTDs to relational schemas and back [4]. Such algo-
rithms take over all the routine tasks of converting DTDs to
conceptual models. As a result the user can concentrate at
extracting domain objects described in the documents and
aligning them to the mediating or upper-level ontologies.

Finally, these conversion techniques ease the step of shift-
ing the focus of the integration task from document inter-
change to concept exchange discussed in this paper.

2.2 RDF Modelling

There exist a number of means for representing conceptual
models: ER and UML (conceptual modeling) F-logic, RDB,
etc. (databases), DAML+OIL, description logic, etc. (knowl-
edge engineering). Open business integration techniques on
the Semantic Web might use Web standards for represent-
ing conceptual models on the Web, and currently RDF and
RDF Schema [5] seem to be the best candidates for such
a standard. There exist several extensions to RDF Schema,
e.g. DAML+OIL6 proposal that has more expressive power
than RDF Schema itself. However, we naturally expect core
languages to be adopted wider and faster than the extensions
and hence we first concentrate on the use of RDF Schema
still keeping in mind these extensions.

RDF (and its schema language RDF Schema) was primar-
ily targeted at annotation of existing documents with con-
ceptual models. The models are targeted at capturing some
partial knowledge and we face a number of problems while
representingcompletemodels of events and documents. This
leads to the following drawbacks:

– Properties are defined in RDF as first-class objects and
they exist independently from classes. Such an inter-
pretation is a bit unhandy for our needs. For exam-
ple, the propertyAddress must be mapped in differ-
ent ways depending on whether it is attached to class
Invoice , where it stands for billing address, or to class
DeliveryOrder , where it stands for delivery address.
RDF provides the means to distinguish between differ-
ent object-property-value triples on the level of instance
documents, where each property is assigned to a certain

6 http://www.w3.org/TR/daml+oil-reference

3

class. However, property-class assignments are indistin-
guishable at the level of RDF Schema. DAML+OIL suf-
fers the same problem.

– RDF Schema uses therdfs:domain term which spec-
ifies the classes to which the property can be attached.
Multiple occurrence ofrdfs:domain has conjunctive
semantics, that is if propertyAddress can be used
with two classesInvoice andDeliveryOrder then
listing two rdfs:domain classes in the definition of
Address is a wrong way to go. Such statement means
that it can be used with a class, a subclass of both
Invoice andDeliveryOrder , and such a class will
most like have no sense from the domain point of view.
One can model the fact that propertyAddress can be
used with bothInvoice andDeliveryOrder is to
create an artificial superclass for bothAddress and
DeliveryOrder that hasAddress attached, but is
not really informative from the domain point of view.
This problem shows up in any attempt to build a map-
ping ontology where the same property of the ontology,
e.g.SourceClass , needs to occur many times point-
ing to different source classes.

– RDF Schema provides an easy way to represent reifi-
cation: the basicrdf:Resource class (theThing)
is an instance of and a subclass of itself. This creates
certain difficulties in meta-modelling and tool devel-
opment. In the integration tasks we need to model at
three different layers: instance data, conceptual models,
and meta-models (e.g. mapping meta-ontologies). These
three layers must be tighly integrated and still very well
distinguished. Hence, the introduction of three differ-
ent Thing s may be suitable: instance-level resource,
schema-level resource, and a meta-resource.

– Two types of things are mixed in common understanding
of RDF: universal resource locators URL’s that point to
a file on the web and should be treated as filenames and
universal resource identifiers URI’s that look the same
as URL’s but represent logical names of the things in
RDF Schema. Sometimes RDF Schemas stored in sep-
arate files need to be treated as logical units and state-
ments about these files need to be created and processed.

We tried to overcome these problems in our model de-
scribed in Section 3.

2.3 Things to be Mapped: Events, Documents, and
Vocabularies

To be able to reason about the inputs and outputs of the com-
panies being integrated we developed a conceptual model
of WSDL (the part of WSDL specification that is impor-
tant for the context of our mapping work skipping protocols
and bindings). The model is directly derived from the WSDL
specification and provides an RDF Schema for RDF annota-
tions for WSDL documents.

Specifically, WSDL defines the following basic elements
of services:

– Types that provide links to XML Schemas of the mes-
sages exchanged;

– Abstract definitions ofMessages in accordance with
Types ;

– Port Types that specify input and output messages;
– Bindings that specify concrete protocols and formats

for messages according toPort Types .

These elements allow describing the services but do
not represent any temporal knowledge about the messages
needed for the integration.

The Process Specification Language7 PSL tem-
poral ontology includes the classes:activity ,
activity occurrence , timepoint , andobjects .
Activities are performed during certain time intervals marked
with timepoints, and each activity occurrence specifies a
snapshot of an activity at a moment of time. The objects are
defined as things that are not timepoints, not activities and
not activity occurrences, and do not possess temporal proper-
ties. They may participate in activities at certain timepoints
as defined by theactivity-timepoint-object
relation8. PSL provides basic temporal semantics of time
intervals and timepoints, constraints on objects participating
at certain activities, etc.

Accordingly, we extended our WSDL model with PSL
ontology. The class diagram of the composite ontology
is presented in Figure 2. In contains two root concepts:
mediator:Thing and psl:Thing , subclasses of the
former correspond to WSDL concepts and subclasses of the
latter correspond to PSL classes. These classes are linked
with a number of properties depicted in Figure 3. In both fig-
ures classes are represented with circles properties are shown
with labeled edges linking the classes.

We must note that the Web Service Flow Language9

WSFL built on top of WSDL provides the means to specify
temporal and workflow information for services, and in some
future it will make some of this model redundant. However,
WSFL has a longer way to go to become a world-wide stan-
dard than WSDL or PSL. And again, in this work we focus
at kernel technologies that has big chances of being widely
accepted and used rather than at extensions of those.

WSDL annotations made according to our ontology allow
performing inference over WSDL descriptions to validate the
links established between the enterprises. Also they represent
a bit stronger formalization of the services, e.g. by specifying
legal ordering of the events. A sample of a realistic sequence
of events with their order and timeout values is presented in
Figure 4.

3 Mapping Meta-Ontology

The Common Warehouse Model (CWM) Specification [6]
by the Object Management Group10 provides a general ar-
chitecture for a mapping ontology to be adopted by each
specific mapping application. We adopt it to mapping RDF
Schemas and specific concepts like events, messages, vocab-
ularies, and XML-specific parts of conceptual models that

7 http://www.mel.nist.gov/psl/
8 RDF Schema is bounded to binary relations and provides

no means to specify the ternaryactivity-timepoint-
object relation. To model it we had to introduce a spe-
cial class psl:activity at timepoint relation at-
tached topsl:object and linked topsl:activity and
psl:timepoint .

9 http://xml.coverpages.org/wsfl.html
10 http://www.omg.org/

4

mediator:Thing

mediator:Vocabulary

psl:object

psl:Thing

psl:activity_occurrence

mediator:Event

psl:timepoint

mediator:Document mediator:Message

psl:activity_at_
timepoint_relation

psl:activitymediator:PortType

isaisa

isa

isa isaisaisa isa isa

isaisa isa

isaisa

mediator:Thing

mediator:Vocabulary

psl:object

psl:Thing

psl:activity_occurrence

mediator:Event

psl:timepoint

mediator:Document mediator:Message

psl:activity_at_
timepoint_relation

psl:activitypsl:activitymediator:PortType

isaisa

isa

isa isaisaisa isa isa

isaisa isa

isaisa

Fig. 2.WSDL extension (class diagram)

mediator:PortType

mediator:Document

mediator:Event

mediator:Message

mediator:Vocabulary

psl:object

psl:activity_at_ timepoint_relation

psl:timepoint

psl:activity

psl:activity_occurrencemedia
tor:

Docu
ments

*

mediator:Events*

mediator:Messages*

mediator:Vocabularies*

isa

psl:at

psl:in

psl:before*

psl:begin*psl:end*

psl:occurrence_of_activity psl:exists_at

psl:participates_activity_ timepoint*

isa

isa

mediator:EventActivitymediator:EventDocument

psl:is_occurring_at*

isa

mediator:PortType

mediator:Document

mediator:Event

mediator:Message

mediator:Vocabulary

psl:object

psl:activity_at_ timepoint_relation

psl:timepoint

psl:activity

psl:activity_occurrencemedia
tor:

Docu
ments

*

mediator:Events*

mediator:Messages*

mediator:Vocabularies*

isa

psl:at

psl:in

psl:before*

psl:begin*psl:end*

psl:occurrence_of_activity psl:exists_at

psl:participates_activity_ timepoint*

isa

isa

mediator:EventActivitymediator:EventDocument

psl:is_occurring_at*

isa

Fig. 3.WSDL extension (descriptions of classes)

Fig. 4.Event sequence

occur in the business integration tasks. CWM specifies the
following basic primitives for mapping:

– Class TransformationMap a subclass of the
Transformation class. The former is a container for
ClassifierMaps .

– Each ClassifierMap links two groups of classes
with two properties source and target with multiple oc-

currence referring to the groups of source and target
classes being mapped with the map.

– EachClassifierMap connects two groups of proper-
ties with thefeatureMap property that links it to the
FeatureMap class connectingsource andtarget
properties (called features).FeatureMap also includes
a link to anotherClassifierMap mapping property
values.

– Each ClassifierMap may connect a group
of properties and a group of classes with the
ClassifierFeatureMap class referenced via
thecfMapproperty .

The CWM model concerns mapping generic conceptual
models and seems to be too expressive for our needs. Map-
ping classes that normally refer to physical objects to proper-
ties that refer to properties of those is a large source of mis-
understanding in the business tasks, while conceptually there
is nothing wrong with it. In RDF meta-model both properties
and classes are treated in a uniform way, while at the level
of models those are clearly differentiated. Accordingly, we
need to skip it in our mapping framework.

The RDFT (RDF Transformation) mapping meta-
ontology11 specifies a small language for mapping XML
DTDs to/and RDF Schemas specially targeted for business
integration tasks. The class diagram for the basic top-level
classes is presented in Figure 5 using the same notation as
our previous drawings.

11 http://www.cs.vu.nl/ borys/RDFT

5

RDFT:RDFBridge

RDFT:Bridge

RDFT:VocabularyMap

RDFT:Map

RDFT:Interface

RDFT:RolesRDFT:Event2Event

RDFT:DocumentMap

RDFT:XMLBridge

RDFT:EventMap

isa

isa

RDFT:RDFBridges*

RDFT:IncludedMaps*

RDFT:InputInterface* RDFT:OutputInterface*

RDFT:PrivateRoleRDFT:PublicRoleisa

RDFT:DocumentMaps*isa

isa

RDFT:RDFBridges*

RDFT:VocabularyMaps*RDFT:XMLBridges*

isa

RDFT:EventBridges*

Fig. 5.Main RDFT classes: Bridge, Map, Interface, BridgeRelation, and Roles

The basic RDFT class isBridge that connects two con-
cepts (similar to the CWM’sClassifierMap). Bridge
describes common properties of bridges allowing only one-
to-many and many-to-one bridges opposite to CWM allow-
ing many-to-many mappings12.

The bridges also contain theRelation property
pointing to one of the relations subclassed from the
BridgeRelation class:EquivalenceRelation or
VersionRelation .

– Equivalence bridges specify that the source element
of a one-to-many bridge is equivalent to the target set of
elements, and the source set of elements is equivalent to
the target element for many-to-one bridges. E.g. a one-
to-many bridge connecting a source class to a group of
target classes states that the target group is semantically
equivalent with respect to the instance data transforma-
tion task to the source element.

– Version bridges specify that the target set of elements
form a (later) version of the source set of elements.
Opposite to equivalence bridges, they assume that both
source and target concepts belong to the same domain
(or document standard), and may refer to two concepts
with the same name (but different namespaces indicating
versions), and imply that all the relations that held for the

12 Largely the objective of CWM is to model, i.e. to understand the
things, while the objective of RDFT is to be able to transform
instance data according to the mappings that imposes certain ar-
chitectural restrictions.

original concept must hold for the versioned concept, if
the opposite is not stated explicitly.

Several types ofBridges are defined in RDFT:

– Event2Event bridges link different events, specify
temporal event generation conditions, and link the events
to the messages transmitted with them. They connect in-
stances of the meta-classmediator:Event .

– Two kinds of RDFbridges : Class2Class and
Property2Property bridges between RDF
Schema classes and properties.Class2Class
bridges containSourceClass and TargetClass
properties pointing to rdfs:Class instances.
Property2Property bridges contains
SourceProperty and TargetProperty prop-
erties pointing tordf:Property instances. Again,
only one-to-many and many-to-one bridges are allowed
in RDFT. In RDF Schema properties are defined as
first-class objects together with classes, and they capture
most of domain knowledge. Classes mostly specify
aggregation of properties, and thus we do not include
class-to-property and property-to-class bridges in RDFT.

– Four kinds of XMLBridges : Tag2Class and
Tag2Property bridges link source XML DTD
tags and target RDF Schema classes and properties.
Class2Tag and Property2Tag bridges connect
RDF Schema classes and properties, and the ele-
ments of the target DTD. These are constructed from
SourceTag andTargetTag properties in addition to

6

theSource/Target-Class/Property properties
mentioned above.

In some cases it is possible to declaratively specify the cor-
respondence of property or class values linked by a bridge
(e.g. by specifying the set ofClass2Class bridges). If it
is not feasible then we use theExpression property of
a Bridge . It specifies an XPath [7] expression transform-
ing instance data. XPath defines the means for two tasks:
addressing data elements in XML documents and perform-
ing element or attribute value transformations (Chapter 4 of
the specification). We use only the second part of the XPath
functions (e.g.substring_before).

We need to create an ontology of a DTD to represent
different DTDs in our framework and performing infer-
ence involving DTD elements and attributes (e.g. to check
whether all the elements are mapped with RDFT bridges).
The DTDs themselves are available to the mediating ser-
vice, and only DTD elements and attributes must be anno-
tated. Accordingly, we introduce two classes to represent
them: XMLElement and XMLAttribute , subclasses of
XMLTag. PropertiesSourceTag and TargetTag take
XMLTag instances as their values.

Several assignments of a property to a class (e.g. a prop-
erty with multiple cardinality) are not distinguishable in RDF
Schema because they are not that significant from the model-
ing point of view. However, they are crucially important from
the instance data transformation perspective, and we intro-
duce classRole to specify each property-class assignment.

The bridges are grouped into maps. EachMap is a
collection of bridges serving a single purpose. The maps
are identified by their names13 and form minimal reusable
modules of RDFT bridges. EachMap can include other
maps (theIncludedMaps property) and serves as a con-
tainer for Bridge s (the Bridges property). The maps
use some class and property names within the bridges
inside the maps and may be reused with other names
passed as formal parameters. These parameters are formal-
ized with theInterface class depicted in Figure 5. Each
Interface class contains two properties:PublicRole
and PrivateRole that specify the correspondence be-
tween external and internal names, correspondingly.

Connecting two services means connecting their events
(instantiating theEventMap depicted in Figure 5) consist-
ing of Event2Event bridges. Each of the bridges points to
aDocumentMap aligning the documents attached to events,
and, in turn, consisting ofXMLBridges , RDFBridges
andVocabularyMaps .

We do not impose any restriction on class names of a user
ontology conforming the RDFT meta-ontology. Instead, all
of them are marked as instances of RDFT meta-classes, as
it is illustrated with aClass2Class bridge in Figure 8. In
the figure user’s classes are marked asS0, S1, andT0, and a
bridge connecting them is marked withB_01.

It is important to differentiate the role of RDFT as a
meta-ontology versus a template. Assume a definition of

13 In this case we have a collision of resource identifiers URI’s
that’s are used in RDF Schema and represent a logical name with-
out any associated physical object and resource locators URL’s
that point to files somewhere on the Web. The maps are identi-
fied by their URI’s but should be accessible via their URL’s as
reusable files with bridges.

a metaclassmCand a definition of propertymP with do-
main mCand rangerdfs:Literal . ClassiC , an RDF
instance ofmCwill be a class definition that in addition to
RDF Schema standard properties for a class definition (e.g.
rdfs:subClassOf) possesses instantiated literal prop-
erty iC .

However, we would expectproperty definitionof iC to be
applicable tomCrather than theproperty itself. So, we would
rather need to call our RDFT ontology as a template ontol-
ogy, while the term ‘template’ is not specified within RDF
Schema. The instantiation semantics of RDF Schema class
definitions, opposite to properties, seems to be acceptable for
our needs.

Another important notion related to RDFT is its complete-
ness, i.e. possibility to map arbitrary RDF Schemas. The term
‘map’ can be defined in different ways and each definition as-
sumes a set of relations that need to be represented with the
maps. In our case we try to map different part-of decompo-
sitions of object’s properties, and one-to-many and many-to-
one bridges seem to be sufficient for that. For extracting parts
of properties we use quite expressive XPath language.

The main contribution of any architectural solution is to
extract several most important tasks in the area and provide
the means restricted in expressiveness but explicitly support-
ing these tasks. The unsupported cases may be handled by
programming in expressive languages. We follow this princi-
ple in our mapping framework.

SourceClass TargetClass
BridgeM

et
a-

O
nt

ol
og

y
O

nt
ol

og
y B_01

S0

rdfs:Class rdfs:Class

S1

T0

rdf:Property

rdfs:Resource

PS00

PS01
PT00

Fig. 8.The use of RDFT meta-ontology

4 Using Expressive Extensions of RDF
Schema

It is always possible to express RDFT with expressive ex-
tensions of RDF Schema. However, before using them we
should always ensure that this does not make things worse.
People using DAML+OIL use specific DAML+OIL exten-
sions quite seldom, and mostly they pick some minor but
convenient extensions ignoring really expressive language
constructs [8].

The business integration scenario is more specific and re-
stricted that a generic modeling scenario. Business objects
are quite simple and well-defined. Unlike the general case,
most or all the objects might have physical representation,
they are explicitly named, and are a part of a very shallow
taxonomy.

7

RDFT:Class2Class

RDFT:RDFBridge

RDFT:Roles

RDFT:Bridge

RDFT:Property2Property

rdfs_Clas rdf_Propert

mediator:Document

RDFT:Event2Event

RDFT:DocumentMap mediator:Event

isa

RDFT:SourceClass*

RDFT:TargetClass*

isa

isa

RDFT:SourceProperty* RDFT:TargetProperty*

RDFT:Class RDFT:Property

isa

RDFT:DocumentMaps* RDFT:SourceEvent* RDFT:TargetEvent*

RDFT:RDFBridges* RDFT:SourceDocument RDFT:TargetDocument

Fig. 6.Bridges and Roles

Fig. 7.RDFT tool support: mapping two event sequences

8

Accordingly, we do not see any immediate needs for using
more expressive language than RDF Schema.

The intention of the mapping is to be able parse the maps
and generate XML transformation scripts able to translate in-
stance XML documents attached to the messages. That is,
for each target DTD element we need to trace which prop-
erty of which object corresponds to this element, and then
trace whether there is a map to a document from the source
models. Finally, we need to find out which element from the
source DTDs contains the original description of the prop-
erty.

We need to use search-based inference engines, e.g.
CLIPS14, to find these chains. Then, each chain needs to be
translated into an XML transformation language, e.g. XSLT.

5 Tool Support

We are currently developing a prototype tool providing an ad-
vanced map browsing and editing facilities and guiding the
user through the event, document and vocabulary integration
tasks. All these tasks are quite similar from the implementa-
tion point of view: all of them can be treated as RDF Schema
mapping tasks. In the case of event mapping (see Figure 7 for
a screenshot) the prototype tool allows the user to browse two
RDF Schemas representing two event sequences and create
RDFT maps between the schemas. Each bridge can be edited
in details and necessary vocabulary bridges are edited with
the same RDFT map editor applied to document schemas in-
stead of event sequences.

Several important features are still under development in
the tool: an interface to online web service described in
WSDL, an inference engine, and an RDFT execution mod-
ule. In addition, there are a number of small things that are
too annoying to ignore them and too unimportant to talk
about them.

6 Conclusions

We proposed a service integration architecture to match the
following requirements:

– Allow switching from document transformation and ex-
change between the services to concept and model ex-
change.

– Annotate WSDL descriptions with concepts from tem-
poral PSL ontology and some concepts from the business
integration domain.

– Contain a mapping meta-ontology specifying map-
ping information between DTD elements, RDF Schema
classes and properties, and events.

– Allow performing inference-based checks for complete-
ness and consistency of the mappings.

– Allow compiling the data transformation chains repre-
sented by the mappings to a low-level XML transforma-
tion language.

In the paper we present our current progress in satisfying
these requirements, namely switching between document-
based to concept-based integration, WSDL annotation, map-
ping meta-ontology and preliminary steps in inference-based
validation and compilation.

14 http://www.ghg.net/clips/CLIPS.html

Acknowledgements.The author would like to thank Di-
eter Fensel, Christoph Bussler, Michel Klein, and Volodymyr
Zykov for their helpful discussions and the reviewers for
their comments.

References

1. Bae, H., Kim, Y.: A Document-Process Association Model for
Workflow Management. Computers in Industry47 (2002) 139–
154

2. Bussler, C.: Modeling and Executing Semantic B2B Integra-
tion. In: Proceedings of the 12th International Workshop on Re-
search Issues on Data Engineering: Engineering E-Commerce
/ E-Business Systems (RIDE-2EC’2002) (In conjunction with
ICDE-2002), San Jose, USA, IEEE CS Press (2002)

3. Mello, R., Heuser, C.: A Rule-Based Conversion of a DTD to
a Conceptual Schema. In Kunii, H., Jojodia, S., Solvberg, A.,
eds.: Conceptual Modeling - ER’2001. Number 2224 in LNCS,
Yokohama, Japan, Springer (2001) 133–148

4. Lee, D., Chu, W.: CPI: Constraint-Preserving Inlining algorithm
for mapping XML DTD to relational schema. Data and Knowl-
edge Engineering39 (2001) 3–25

5. Brickley, D., Guha, R.: Resource Description Framework (RDF)
Schema Specification 1.0. Technical report, W3C Candidate
Recommendation, March 27 (2000)

6. CWM: Common Warehouse Model Specification. Technical
report, Object Management Group (2001)

7. Clark, J.: XSL Transformations (XSLT). Technical report, W3C
Recommendation, November 16 (1999)

8. van Harmelen, F.: The Complexity of the Web Ontology Lan-
guage. IEEE Intelligent Systems17 (2002) 71–73

