
Using the Right Tools: Enhancing retrieval from marked-up
documents

Christopher Welty Nancy Ide

Vassar College
Computer Science Dept.

Poughkeepsie, NY 12604-0462
{weltyc,ide}@cs.vassar.edu

Abstract
We are experimenting with the representation of a DTD and associated documents (i.e., documents conformant to
the DTD) in a knowledge representation (KR) system, in order to provide more sophisticated query and retrieval
from TEI documents than current systems provide. We are using CLASSIC, a frame-based representation system
developed at AT&T Bell Laboratories. Like many KR systems, CLASSIC enables the definition of structured
concepts/frames, their organization into taxonomies, the creation and manipulation of individual instances of
such concepts, and inference such as inheritance, relation transitivity, inverses, etc. In addition, CLASSIC
provides for the key inferences of subsumption and classification. By representing a document as an individual
instance of a hierarchy of concepts derived from the DTD, and by allowing the creation of additional user-defined
concepts and relations, sophisticated query and retrieval operations can be performed. This paper describes
CLASSIC and the formalism of description logic that underlies it, and demonstrates how it can be used for
enhanced retrieval from richly encoded documents.

1 Introduction
The development of the Text Encoding Initiative (TEI) Guidelines enables the encoding of a
wide variety of textual phenomena to any desired level of fine-grainedness and complexity,
relevant to a broad range of applications and scholarly interests. The ability to encode complex
phenomena has, in turn, created a demand for adequate means to manipulate the text once it has
been marked up according to the user's interests and needs. One obvious and immediate need for
users of the TEI scheme is a flexible means to query and retrieve from an encoded text, which
does not require deep knowledge of the structure of the text by the user. There has been some
work in this area (see, for example, Blake, et al. [1997], and Harié et al. [1996]), although so far
most systems require that the user know the specific structure of the document as defined by the
Document Type Definition (DTD).

Beyond the need to query and retrieve based on tags that exist in a TEI document, a means to
manipulate and query classes of objects is also desirable. The TEI DTD uses SGML entity
definitions to create "classes" of elements and attributes, in particular, for groups of elements
with common structural properties (e.g., all elements that can appear between paragraphs),
groups of attributes which apply to certain classes of elements (e.g., attributes for pointer
elements), etc. In addition to grouping together elements and attributes with common structural
properties, the definition of such classes recognizes common semantic properties among
elements and attributes. However, the SGML entity definition mechanism is designed primarily
for string substitution within the DTD itself, thereby enabling easy reference to these classes in
later element definitions; the common semantic properties that are implicit in the classification
scheme are lost for the purposes of retrieval and document manipulation. Obviously, a means to
refer to and manipulate classes of elements and attributes in a query and retrieval system would
provide substantial additional power for the user.

We are experimenting with the representation of a DTD and associated documents (i.e.,
documents conformant to the DTD) in a knowledge representation (KR) system, in order to
provide more sophisticated query and retrieval from TEI documents than current systems
provide. We are using CLASSIC, a frame-based representation system developed at AT&T Bell
Laboratories (Brachman et al. [1989]). Like many KR systems, CLASSIC enables the definition
of structured concepts/frames, their organization into taxonomies, the creation and manipulation
of individual instances of such concepts, and inference such as inheritance, relation transitivity,
inverses, etc. In addition, CLASSIC provides for the key inferences of subsumption and
classification (Brachman [1983]). By representing a document as an individual instance of a
hierarchy of concepts derived from the DTD, and by allowing the creation of additional user-
defined concepts and relations, sophisticated query and retrieval operations can be performed.

In particular, we are exploring the use of KR techniques to enable the following:

• Classification of elements: in many cases, users want to manipulate groups of objects that are
seen as belonging to a single general class. For example, the tags <author> and <name> may
both be used to mark names of people, and these two types of elements can be seen as
members of a general class of PEOPLE. Or, for linguistic analysis, all words, names, dates, etc.
may need to be regarded, for certain purposes, as falling into the class of linguistic TOKENS.
SGML provides no way to classify groups of elements and therefore no way to query and
manipulate such groups as a whole.

• Recognition of context-sensitive relationships: SGML provides no scoping mechanisms, and
therefore the definition of an element applies across the entire document. There is no means,
for instance, to define an element NAME which, if it appears in the heading of the text, must
include tags for FIRST NAME, MIDDLE INITIAL, and LAST NAME, and another element
NAME which appears in the body of the text and may a different set of elements. SGML
allows for specifying that each of these content models is an alternative, but cannot enforce or
prevent the use of one of them in a given context.

• Support for multiple views: as digital libraries become more accessible, they must be capable
of handling diverse requests from the variety of potential users. Any given text may be
“viewed” from multiple perspectives, depending on the intended use: a text can be seen as a
physical object, a logical object, a rhetorical object, a linguistic object; it may be seen as a
historical database of information or a work of literature. In each of these views, the same
elements may be considered as very different objects with correspondingly different
relationships to other elements. For example, for the linguist, names may be linguistic tokens
or proper nouns, which stand in relation to other syntactic elements and structures; he or she
might make a request such as, “for every sentence in the text where a proper noun is the
syntactic subject of the sentence, show me the corresponding sentence in the Romanian
translation”. On the other hand, for the historian names may be important insofar they relate
to dates, places, etc. that also appear in the text, and he or she might ask for all the names
mentioned in letters (but not the author or recipient) sent from Philadelphia on July 4, 1776.
To answer each of these requests, an entirely different view, comprising an entirely different
set of relationships among elements, attributes of elements, etc., must exist. SGML does not
conveniently support multiple views, and in some cases cannot represent them at all.

The definition of multiple sets of complex inter-relationships and properties is easily handled
using techniques employed in the field of knowledge representation. Therefore, we propose
“using the right tools” for the different kinds of tasks involved in providing access to complex
documents: a comprehensive SGML encoding scheme for specifying tag syntax, and powerful
KR techniques to enhance and extend retrieval capabilities.

Our underlying premise is that we are developing technology for a digital library whose contents
are fully marked up texts. The foundations of the technology we are developing are in two areas:
text-encoding, in particular the TEI and Corpus Encoding Standard, and knowledge
representation, in particular description logics and formal ontology. We begin with some
background information on these two fields and the relevant sub-fields, and then describe the
research itself.

2 Text Encoding
In general, text-encoding is the practice of marking up text with tags that indicate a section of text
should be interpreted or rendered in a particular way. The Standard Generalized Markup
Language (SGML), which provides a meta-language for developing specific tag sets, has rapidly
become the basis of most markup schemes intended for general use. The best known SGML-
based encoding scheme is HTML, which provides a tag set suitable for document display.
However, HTML is neither an adequate nor a pure descriptive markup scheme, in which text
elements are consistently marked according to their role or function rather than the way in which
they should be rendered. For intelligent retrieval and manipulation of complex text objects,
descriptive markup is essential.

The Text Encoding Initiative (TEI) has developed an SGML-based descriptive markup scheme,
which provides an extensive set of tags for marking a wide range of textual phenomena. We have
developed a TEI-compliant encoding scheme, the Corpus Encoding Specification (CES) (Ide
[1998a,b]) for encoding linguistic corpora, which both constrains and extends the TEI scheme to
suit our particular needs. In particular, we constrain the TEI in the following ways:

• selection of only those tags relevant to our application;
• specification of a precise semantics for tag use, that is, specifications of exactly what the

contents of each tag, in terms of both its form and linguistic function, must be;
• closed lists of attribute values;
• tighter constraints on allowed tag syntax (i.e., embedding, tag content, etc.)

 These constraints were imposed after consideration of several factors, including the processing
needs of our tools, the need for incremental addition of markup and to facilitate automatic
tagging (especially in the early stages of text preparation), to limit to the extent possible the types
of content that may appear within particular tags, and to enable tighter validation for correct
markup syntax.

 We extend the TEI as follows:

• addition of elements not provided by the TEI, or elaboration of tag content to suit our needs;
• definition of a data architecture which provides for a hyper-linked set of SGML documents

representing the original text and different types of linguistic annotation (e.g., part of speech
tags, alignment information, etc.). Thus each of the hyper-linked documents represents a
different view of the same text.

The reader is referred to http://www.cs.vassar.edu/CES/ for full documentation of the CES
scheme. The CES is well-suited to our purposes here because of its data architecture, and
because it provides a tight DTD for a smaller set of elements and is therefore useful for testing
purposes. However, our methodology should scale up to handle the full TEI DTD. Note that the
CES is currently being adapted to the Extensible Markup Language (XML), which is likely to
replace SGML as the meta-language of choice.

3 Knowledge Representation
Knowledge Representation (KR) is a wide and varied field, which focuses almost exclusively on
semantics and the ways in which symbolic systems can convey it. It is important to realize,
however, that we are proposing KR as a natural complement to the syntax-based systems
currently in place for supporting markup. The strengths of SGML, such as support for
structural specifications, naturally complement the weaknesses of KR techniques and systems,
and vice-versa.

3.1 Relational Representation Systems

Our approach is centered on an in-depth and disciplined study of the domain and a realization of
that domain in a relational system. While we provide capabilities beyond this basic technology,
it is important to realize that a large number of the benefits we describe here come simply from
the relational paradigm.

A relational system has three principle elements: classes, objects, and relations. Any of the
wide variety of systems such as Relational and Object-Oriented Databases, Semantic Networks,
and Frame Systems, fall into this category. A class (a.k.a. concept or schema) is terminological,
providing merely a description of what the actual data may look like: i.e., its attributes and type
information. Objects are the data itself, which are typed according to class. Relations are the
links that specify attributes and join the objects.

 For example, we could define a single class, PERSON, and three relations, NAME, GENDER,
and SPOUSE, and define the class PERSON as follows:

{PERSON::
 NAME: [1] String
 GENDRE: [1] Male, Female
 SPOUSE: [1] Person
}

This should be interpreted as "A person has one name, which is a string, one gender, which is
either male or female, and one spouse, which is another person." When the classes have been set
up that describe all the possible types of data we wish to store, we populate the system with
objects. Two objects representing a husband and wife would look something like:

{OBJECT-9876::
 Type: PERSON
 Name: "Abigail Adams"
 Gender: Female
 Spouse: OBJECT-7654
}

{OBJECT-7654::
 Type: PERSON
 Name: "John Adams"
 Gender: Male
 Spouse: OBJECT-9876
}

As simple as this example may be, it illustrates several important points. First of all, object
names (OBJECT-9876 and OBJECT-7654) are simply unique symbols used as placeholders to
allow cross-referencing the objects. One might expect, for example, the spouse relation of the
object representing Abigail Adams to have a value "John Adams." Instead, we put in the object
name, which can be effectively interpreted as "the object of type person whose name is John
Adams."

Figure 1. Two simple objects.

Type: PERSON
Name: Abigail Adams

Gender: Female

TYPE: PERSON
Name: John Adams

Gender: Male
spouse

The second point is that data like this is typically more conveniently illustrated in diagrams that
convey the relational aspect of the representation, as shown in Figure 1. One advantage of these
pictures is there is no need for the object-names as placeholders.

The final point is not immediately obvious, but requires consideration of existing library
information systems, in which there is only one class of object, a publication, available to the
general user. Although modern card catalog information systems allow for nested attributes
(attributes of attributes) that lead to slightly more expressive queries, the only type of thing that
can be retrieved in a search is a publication. In web-based search, in which statistical methods
increase the potential efficacy of keyword-based queries, the only result of a search is
documents. We believe this to be a critical flaw as libraries become digital and provide access
not just to the traditional card catalog type information, but to the contents of the texts
themselves. We are proposing expanding library information systems to include knowledge of
authors, their institutions, etc., as well as information relating to the contents of documents such
as character names, places, etc., and even such structures as paragraphs, or nouns and verbs, such
that these objects can be the potential results of a search. In later sections we give more specific
examples of this notion that motivate it better.

In order to achieve the proposed expansion of library information systems, extensive ontological
analysis is required.

3.2 Formal Ontology

“Ontology” is one of those unfortunate words whose usage has become somewhat
disassociated with its original meaning by those who use it carelessly. In philosophy, ontology
refers to the study of the state of being and the identification of the kinds and nature of things
that exist. This rather vague notion has been captured by the knowledge representation
community and slightly adapted to mean "describing what things are." A formal ontology is a
complete symbolic description of what things in some domain can be. This description is
specified in a formal notation, such as a logic or calculus, in which all the possibilities are either
enumerated or stated inductively. In other words, the ontology is the definition of the classes,
relations, constraints, and rules of inference a knowledge-based system will use.

The process of analyzing a domain in order to formally specify an ontology requires several
steps, one of the most important of which is identifying the object types, specifying their
attributes, and specifying the kinds of relationships they can have with each other. When the
specification language of an ontology is relational, this step can frequently be accomplished
using a graphical notation; however, it is important to distinguish this type of terminological
graph, such as the one shown in Figure 2, from the type of assertional graph shown in Figure 1.
An assertional graph denotes actual data and links; a terminological graph specifies no actual
data, only what the data can be. In Figure 2 we have stated that there can be two types of
objects, PERSON and BOOK, and that an instance of a person can have a SPOUSE relationship
with another instance of PERSON, and any number of AUTHOR-OF relationships with
instances of BOOK. In this terminological picture, or ontology, we refer to no actual people or
books, merely describe (and constrain) how that kind of data can be specified.

Figure 2 A simple ontology.

PERSON BOOK
author-of

spouse

Another important step in ontological analysis that is supported by most formal languages
(although not by simple relational databases is the identification of taxonomic relationships.
Taxonomic structure is rapidly growing in importance as a mechanism for narrowing search
spaces (Welty [1998]). We could easily imagine our ontology from Figure 2 being expanded
by providing two disjoint subclasses of person, FACULTY and STUDENT , and another non-
disjoint subclass of person AUTHOR. An object could be an instance of FACULTY, or
STUDENT (but not both at the same time), as well as an instance of AUTHOR. We have also
added the subclasses FICTION and NON-FICTION for books. The extended ontology is
shown in Figure 3.

The taxonomic relationship is typically unique in ontological analysis in that it is the only purely
terminological relationship (with the notable exception of the part/whole relationship, which is
still not fully understood; see Artale et al. [1996]). In other words, taxonomic relationships exist
between classes, not between the instances.

3.3 Description Logics

Description logics are the class of representation languages that derive from KL-ONE
(Brachman and Schmolze [1985]), a knowledge representation language that first tried to
formalize the notion of a frame, as described in Minsky [1981]. Description logics are for the
most part less expressive than First-Order Logic (Borgida [1998]), with a syntax that enables
rules of inference that are sound, complete, decidable, and allows for the taxonomy to be
exploited for tractability.1 While the types of these languages vary, attempts have been made to
formalize a core functionality that characterizes them (Patel-Schneider and Swartout [1993]), and
they all share two basic features: subsumption and terminological reasoning (explained below).
We use the CLASSIC system (Brachman, et al. [1989]), a description logic developed at AT&T
Bell Laboratories (now AT&T Labs – Research).

Description logics have three basic syntactic elements: concepts, roles, and individuals, which
correspond to classes, relations, and instances (or data objects). The language of description
logics is centered on specifying information in such a way that it is possible to automatically

1 A reasoning system is sound if no unprovable inferences can be made, complete if anything that can be proved
is inferred, and decidable if a procedure exists that will make all inferences in finite time. Tractability refers to
the time it takes to compute the inferences, where more tractable implies less time.

Figure 3 An ontology with taxonomic relationships.

PERSON BOOK
author-of

spouse

STUDENT

FICTIONNON-FICTION

AUTHOR

FACULTY

determine when one concept subsumes another. For example, the set of objects that are blue or
green subsumes the set of objects that are blue.

While many languages also provide for representing classes of objects, description logics
actually allow reasoning and expression using them. In most systems, most notably database or
object-oriented systems, classes are static, membership in a class is stated explicitly, and all
queries and any reasoning occur at the assertional level (on the instances). Description logics,
on the other hand, do allow for reasoning and queries at the terminological level (on the classes).
This distinction is at once subtle and crucial.

The simplest case of terminological reasoning is computing subsumption relationships between
concepts. For example, imagine that there are three concepts defined as follows:

(define-concept book)
(define-concept nonfiction-book book)
(define-concept biography nonfiction-book)

This sets up a taxonomy of types of books. We can now define several more concepts:

(define-concept person)
(define-concept author
 (AND person
 (ALL author-of book)
 (AT-LEAST 1 author-of)))

This defines an author as a PERSON with at least one value in its AUTHOR-OF role, and all
those values must be individuals of BOOK. In other words, an AUTHOR is a PERSON who is
the author-of at least one BOOK. Now we can define another concept:

(define-concept nonfiction-author
 (AND person
 (ALL author-of nonfiction-book)
 (AT-LEAST 1 author-of)))

CLASSIC is capable of computing that AUTHOR subsumes NONFICTION-AUTHOR, since
it can be proven that all individuals in any interpretation that satisfy the definition of
NONFICTION-AUTHOR will also satisfy the definition of AUTHOR. Note that while this
may be intuitively obvious, in the definition above it is not explicit: NONFICTION-AUTHOR is
defined to be a sub-concept of PERSON, not a sub-concept of AUTHOR. Only computational
systems capable of reasoning at the terminological level would be capable of recognizing the
implicit subsumption between these two concepts. The important point here is that the reasoning
is being performed over the concepts (or classes), and in this case the taxonomy is being
automatically restructured. At this time, only description logics are capable of this reasoning,
and the importance of this capability is that it allows us to exploit the taxonomy for increased
efficiency.

This was only a simple example and only one use of terminological reasoning. In the next
section we discuss a more complex example that demonstrates other uses of terminological
reasoning for semi-structured and incomplete data, which is a common problem in the
representation of old documents.

4 Semi-structured and Incomplete Data
We have been working with several groups involved in large, ongoing encoding efforts. The
Brown Women Writers Project (Flanders, 1998) and the Model Editions Partnership (Chesnutt
1995) are two such efforts focused on encoding of humanities data, including manuscripts,

letters, diaries, and other document sources. Many of the sources are more than 100 years old,
and others date back to the sixteenth century. A large proportion of these materials exists in
manuscript (i.e., hand-written) form only.

These documents present difficulties for most representation systems because the data are
incomplete and semi-structured. Because of the condition of some of the documents (e.g.,
manuscript stains), or due to illegibility, some of the data are incomplete. Semi-structured data,
which does not consistently adhere to a preconceived template, is also characteristic of these data:
for example, some diary entries include dates while others do not, letters may or may not include
recipient addresses (possibly depending upon whether or not they were hand-delivered), etc.
Such omissions could be regarded as cases of incomplete data: e.g., a diary entry can be
assumed to have a date, which is missing in some of the entries. However, unlike the database
community, we distinguish semi-structured and incomplete data: incomplete data is data that was
there or should be there(e.g., every letter has a recipient, although in some cases the recipient
may not be discernible), whereas a letter in which no recipient address is specified is semi-
structured, since the address is not a necessary part of it.

4.1 Incomplete Data

Knowledge Representation and Reasoning has much to offer in domains in which data are often
incomplete and/or semi-structured. The purpose of this section is to provide a realistic yet simple
example of how the representation relates to the markup, and how our research can exploit the
power of KR tools to deal with this rich and unique kind of data.

Let us suppose that our library has a special collection of original letters from a well-known
person, Abigail Adams. These letters are being entered into the library in electronic form and
marked up. Part of the DTD for marking up these letters includes, among others, the tags
SENDER, RECIPIENT, RECIPIENT-ADDRESS, and SENDER-ADDRESS.

One could well imagine the following to be an excerpt from a marked up letter:

<head>
<sender>Abigail Adams</sender>
<sender-address>Boston, MA</sender-address>
<recipient>John Adams</recipient>
<recipient-address>Philadelphia, PA</recipient-address>
</head>

The goal of this markup, again, is to enable retrieval of information in a far more robust way than
was previously possible. This idea goes well beyond keyword searches or substring matches,
because the presence of the tags provides additional semantic information. This is not just a
document with the string "Abigail Adams" in it; it is a letter from Abigail Adams, distinct from a
letter to Abigail Adams or a letter that mentions Abigail Adams. Given the wealth of information
fully digital libraries will contain in the future, such differentiations could mean the difference
between a query returning a few items and a query returning thousands of items.

One can imagine that some of the marked up information from digital texts in general is being
automatically extracted and entered into a card catalog database, in order to facilitate access to the
documents. For this to happen, classes (or database schemas) need to be created that correspond
to the object types that will be extracted. These objects correspond to marked-up elements
within electronic texts, so that the data extracted from the marked-up excerpt above and entered
into the database would be:

{OBJECT-0213::
 Type: Letter
 Sender: OBJECT-9876
 Recipient: OBJECT-7654
}

{OBJECT-9876::
 Type: Person
 Name: "Abigail Adams"
 Address: "Boston, MA"
}

{OBJECT-7654::
 Type: Person
 Name: "John Adams"
 Address: "Philadelphia, PA"
}

We will, for the moment, ignore how the extraction process determines the correspondence
between a person's name in the marked up text and an object whose name slot has that value in
the database.

Once the data have been extracted, a query such as "FIND all letters from Abigail Adams to
John Adams" is possible. Clearly, such a query could not be expressed in any current card
catalog systems or using keyword other indexing approaches.

We are now ready to consider how terminological representation comes into the play. The
examples presented thus far have been entirely assertional. The terminological part of the
representation in a database comprises the class or schema definitions, which are static and used
only as type checking mechanisms. Consider, however, the case of another letter in the
collection that has been damaged over time, resulting in the loss of the recipient's name, although
the recipient's address is still intact. The markup might be as follows:

<head>
<sender>Abigail Adams</sender>
<sender-address>Boston, MA</sender-address>
<recipient-address>Philadelphia, PA</recipient-address>
</head>

Outside of description logics, there is no way to represent the fact that this letter is from Abigail
Adams and to "someone in Philadelphia," without actually creating a new object as a sort of
place holder for that person. In other words, the closest database representation would be:

{OBJECT-0214::
 Type: Letter
 Sender: OBJECT-9876
 Recipient: OBJECT-7655
}

{OBJECT-7655::
 Type: Person
 Name: "Unknown"
 Address: "Philadelphia, PA"
}

We have created a new, "dummy" Person object (OBJECT-7655) whose address is
Philadelphia. The problem here is that the existence of this unknown person object implies that
the recipient of the letter is not John Adams, because John Adams is represented by another
object (OBJECT-7654), and this is not necessarily the case. The recipient may not be John
Adams, but then again it may be – we just don't know. All we do know is that the recipient is in
Philadelphia.

In a description logic, we can allow for terminological descriptions of attributes without giving
them concrete assertional values. The four objects in question would be represented as follows:

(define-individual OBJECT-0213
 (AND Letter
 (FILLS Sender OBJECT-9876)
 (FILLS Recipient OBJECT-7654)))

(define-individual OBJECT-9876
 (AND Person
 (FILLS Name "Abigail Adams")
 (FILLS Address "Boston, MA")))

(define-individual OBJECT-7654
 (AND Person
 (FILLS Name "John Adams")
 (FILLS Address "Philadelphia, PA")))

(define-individual OBJECT-0214
 (AND Letter
 (FILLS Sender OBJECT-9876)
 (ALL Recipient (AND Person
 (FILLS Address "Philadelphia, PA")))))

The first three objects (or individuals in a description logic) are precisely the same as in a
database approach, but the final individual (OBJECT-0214) is different, and there is no dummy
object. Instead, the recipient of the letter is described using a new class, "a person whose
address is Philadelphia." This is a class , not a new individual; in a description logic a class (or
concept) is a description of a set of individuals, just as a schema is in a database. By using a
concept that describes all the possible values for the recipient, we convey all the information
without excluding the possibility that John Adams is the recipient, since OBJECT-7654 matches
that description.

The important point in this example is that by creating this new, more specific class, we enable
the Abigail Adams letter to be retrieved by a query, “find all letters sent to people in
Philadelphia”. However, because there is no value in the recipient slot of the object, we have
constrained it further. This does not mean that all objects that match the constraint are considered
values of the recipient slot; it simply means that the recipient of the letter is a person who lives in
Philadelphia. The slot itself is not filled, and therefore the letter would not be retrieved by the
query, “find all letters to John Adams.”

4.2 Semi-structured Data

Description logics are also well suited for handling semi-structured data. The main obstacle for
most systems in dealing with semi-structured data is that there are no precise schemas. In a
database (and, for that matter, in an object oriented design), the main purpose of a schema is to
define which attributes a particular data type can have. A problem that arises with semi-
structured data is that instances of the same type may have different attributes.

In a description logic, all attributes (or roles) are actually global. Any piece of data can have any
of the roles that have been previously defined. The concepts (which, again, correspond to
schemas) do not define the exclusive list of roles for their individuals. In other words, given the
concept below:

(define-concept letter
 (AND document
 (ALL sender person)
 (AT-LEAST 1 sender)
 (ALL recipient person)))

which says that, for all individuals of LETTER there must be at least one value in the sender role,
all the fillers must be individuals of PERSON, and that all the fillers for the recipient role must
be individuals of PERSON as well. It does not say that individuals of LETTER have any
restrictions on any other roles. An individual of LETTER could have a NAME role (if such a
role has been defined), or fillers for any other defined role.

It is also possible to restrict individuals of certain concepts from having fillers for particular
roles. For example, we might define the concept UNSENT LETTER as a letter without a
recipient:

(define-concept unsent-letter
 (AND letter
 (at-most 0 recipient)))

In general, a concept describes both the necessary and sufficient conditions for membership.
This is the main reason description logics handle semi-structured data so easily: most other
representation systems provide only for the specification of necessary conditions. With
necessary conditions, once you know a piece of data is an instance of a specific type, that data
must obey the restrictions described by that type. Conversely, with sufficient conditions, once a
piece of data obeys the restrictions described by a specific type, it is an instance of that type.

The power of description logics lies in the expressiveness of terminological representations.
Again, while several description logic systems exist, we have been using the CLASSIC
description logic (Brachman, et al. [1989]). CLASSIC provides a subset of the full description
logic specification described in Patel-Schneider and Swartout [1993], lacking features such as
disjunction in concept descriptions, role instantiation, and SAME-AS on general roles. These
features have been excluded intentionally to provide speed and tractability, as well as manageable
memory requirements.

5 System Overview

Our system has several major components, as shown in Figure 4. The arrows show
dependencies or flow of information (or both). In some cases the information flow is formal
(i.e. automatic), and in other cases informal (human generated). The figure itself does not
distinguish these types; they are defined below. All the examples used in this section are based
on work we are doing using the CES DTD.

5.1 DTD and Basic Ontology

All efforts begin with the DTD itself, which in many cases is already in place. In general there
should be a separate ontology effort for each DTD, although the obvious overlaps between
DTDs should result in significant re-use of ontology components. From the DTD, the basic
ontology is generated automatically, which is similar in concept to generating database object
models from DTDs, as in Simons (1997). The basic ontology simply consists of each element
in the DTD, and the taxonomy will be generated based on the use of entities and some TYPE
attributes. For example, the CES DTD includes a simple taxonomy of paragraph-like elements
that are specified using entities. These entities become concepts in the ontology that subsume all
the elements contained in the entity definition. The NAME element in the CES DTD is used
consistently with the TYPE attribute to indicate a one-level deep taxonomy that includes place
names, person names, organization names, etc.

The basic ontology is then augmented manually to reflect any other formal semantics that apply
generally. For example, in our basic ontology, there is a concept DATE that corresponds to the
DATE element in the CES DTD. We have found it useful to distinguish between a date in the
header of a document and a date in the body. Since each of these has identical syntactic
structure, there has traditionally been no reason to create more than one tag; however,
semantically there is a difference between a date used in the header (which will contain meta-data
about the document or the markup), and a date that appears as part of the document’s marked-up
text. In order to create these two semantic categories, we have included general concepts for
header elements and body elements, and then two concepts, MARKUP-DATE and CONTENT-
DATE. The former is a concept subsumed by both HEADER-ELEMENT and DATE, and the
latter by BODY-ELEMENT and DATE. These new concepts can be thought of as “virtual
tags,” since they don’t appear explicitly in the document but can still be retrieved.

Although the addition of these concepts to the ontology is done manually, classification of

Figure 4. Functional Layout of the System.

Marked Up Text
F
i
l
t
e
r

Knowledge
Base

Ontology

DTD Basic
Ontology

Documentation

User

Ontologies

specific marked-up regions of text is done automatically via subsumption reasoning. This is an
important point, because we feel that encoders will not spare the time to go back through their
documents and add new tags that match new elements specified in the ontology. Adding
concepts to the ontology is, on the other hand, fairly easy to do. The resulting ability to apply
these new concepts to all documents that use the DTD makes the effort involved in using our
approach easily worth the gains of increased accessibility.

The automatic recognition of, e.g., occurrences of the virtual CONTENT-DATE tag proceeds as
follows: the actual tags are extracted from a marked-up document and used to populate a large
knowledge base. Each occurrence of a tag in the document corresponds to an instance in the
knowledge base, and structure-preserving relations between these instances maintain the parse
tree of the document. In particular, the relation contains is used between an element that contains
other elements and those elements, and this relationship is defined to be transitive, i.e. if A
contains B and B contains C, then A contains C. Therefore a text marked up roughly as
follows:

<head> … <date>1/1/1998</date> … </head>
<body> … <div> … <p> … <date>7/4/1776</date> … </p> … </div> … </body>

will lead to the creation of the instances shown in Figure 5. The dashed links show the
information that is not explicitly in the markup, i.e. that has been added via inference. Note that
the two date elements from the text are each classified appropriately.

Figure 5. Automatic Classification of Dates

DATE

MARKUP-
DATE

CONTENT-
DATE P BODYHEAD

DIV MARKUP-
SECTION

contains

contains
contains

next

contains

contains

contains

xxx named relation

inference

subconcept

instatiation

Concept

Instance
Key :

contains

xxx

5.2 User Specific Ontologies

Another important aspect of our work is the notion that different users will require different
views of the data. We support different views by allowing users to specify their own ontologies,
or (more likely) choose from a set of pre-defined ontologies that best suits their retrieval needs.

The goal of multiple views is to support a wide range of different users. Scholars in different
fields, e.g. linguists and historians, may have different semantics, and thus different uses, for the
same tags. In addition, different views give our system the ability to handle large amounts of
data more efficiently, and in some cases, enable handling this data at all.

For example, for a scholar doing linguistic analysis, a name’s primary relevance may be that it is
a proper noun, and so the concept NAME appears in a taxonomy of concepts below NOUN. To
a historian, the name itself is not as important as the person it denotes, and so NAME would be a
concept whose instances could fill the "name" role of an individual of the concept PERSON. In
this example, the difference between the two meanings of the same tag are not mutually
exclusive, and both can be retained if desired; the only reason to exclude one would be to
eliminate unnecessary information and thus reduce the size of the knowledge-base being
searched. However, it is possible for tag semantics to conflict across views, thus necessitating
the exclusion of one when the other is present. Description Logics are also useful for detecting
these sorts of inconsistencies, although we have not come across specific examples so far in
practice.

The most significant contribution of the approach we propose here is the ontologies themselves
and the ontological analysis required to build them. More specific examples of these benefits are
outlined in Section 6.

5.3 Filters

A user ontology defines a view of the data that is manifested as a filter. The filter serves to keep
the size of the knowledge base limited to the data that is relevant to the needs of the user.
Returning to our linguist vs. historian example, for a linguist the names, places, and events
included in the documents may not be relevant information, and therefore they can be excluded
from the knowledge base. On the other hand, for a historian the fact that a word is a noun, verb,
or other part of speech may not be relevant.

A filter component enables eliminating certain pieces of information from the knowledge base,
thus enabling a specific view of the data, and at the same time reducing its size. Size is a serious
issue at the moment, in particular for description logics (which are primary storage-based) in
comparison with database systems (which are secondary storage-based). We believe this
problem to be ephemeral, however. Hardware researchers are already testing 64GB flash
memory cards, and experts predict that within the next ten years disk drives will be relegated to
archival backups (Newton [1997]).

Filters also help focus the information being searched so that the scale for human users is
reduced as well. The less information being searched, the less likely that irrelevant information
will be found. Furthermore, tailoring the information in the knowledge base to conform to the
user’s own view of its contents and avoiding overwhelming the user with large amounts of
extraneous information significantly enhances usability.

5.4 The Knowledge-Base and Marked Up Text

Another important goal of this research has been to avoid, as much as possible, changes to the
way text encoders currently mark up documents. Our knowledge-based approach is designed to
naturally complement the efforts that are already on-going.

As mentioned above, The knowledge-base is generated automatically from marked-up texts by
applying a set of filters. The marked-up text is scanned and for each tag, and if its type appears

in the selected ontology (filter), an instance is created in the knowledge-base along with
associated instances its existence implies. This latter point is important because it is the key to
some of the benefits we discuss in the next section

In addition to representing the individual tags in a marked-up text, we also represent the
background knowledge that ties the meaning of these tags together. For example, consider a text
in which the following tag appears:

<name type=person>George Washington</name>

A base ontology could be generated from the DTD that includes a NAME concept with a sub-
concept called PERSON-NAME. In addition, a user-specific ontology could be added that
specifies a relationship between instances of PERSON-NAME and instances of PERSON.
That is, a rule can be included a rule that says, "For every instance of PERSON-NAME, find an
instance of PERSON who has that name. If no such PERSON instance is found, create one.
Then create a relationship between this instance of PERSON-NAME (the tag) and the instance
of PERSON." In fact, the description logic specification of this rule is far more concise than the
English. An illustration of the process is given in Figure 6.

The searching power apparent in this simple example should be clear. During retrieval, a user is
not typically searching through a database of tags, but through a knowledge-base that includes
information that is common to the documents. A knowledge-base generated from a document
(or set of documents) in which there are many references, say, to the name "George
Washington" would include only one instance representing the person, and many links from that
instance to the instances of NAME that reference it. While representing the background
information in this manner simplifies searching dramatically, it is during browsing that this
technique has the most profound advantages.

5.5 Documentation

Documentation is generated manually from a DTD by the DTD designers, with natural language
descriptions of the intended usage and rendering of the tags. We know from our experience,
validated also by existing software engineering practice, that development of documentation and
augmentation of the basic ontology influence each other, since the formal descriptions in the

Figure 6. Automatic creation of background information.

DATE

MARKUP
-DATE

CONTENT
-DATE

NAME

PERSON
-NAME

PLACE-
NAME

OBJECT

PERSON

h
a
s
-
n
a
m
e
-
r
e
f
e
r
e
n
c
e

…

<name type=person>George Washington</name>

…

<name type=person>George Washington</name>

…

<name type=person>George Washington</name>

…

<name type=person>George Washington</name>

…

ontology often clarify or force further specification in the documentation, and existing
documentation is used to assist in developing the formal semantics.

6 Benefits
We believe our approach offers benefits to the text encoding community that naturally
complement existing tools and techniques. These benefits include improved search and
dramatically improved browsing, semantic consistency checking, multiple views of the data, and
more expressive manipulation of the DTD and marked-up texts. In this section we use specific
examples to demonstrate some of the benefits of using our approach.

6.1 Searching and Browsing

We believe the principal advantage of our approach is improvement of searching and browsing
for information retrieval. The added knowledge, resulting from both a principled approach to
ontology development and the background information that ties the meanings of the tags
together, makes it possible to more precisely specify a query. Furthermore, we perceive a new
paradigm in retrieval in which users will use searches to support browsing of the information in
the knowledge-base for scholarly research.

Imagine, for example, a scholar who is motivated by current events to research how
commonplace it was, for government officials to mention government business in their personal
correspondence during the civil war period in American history. While a truly intelligent library
system may one day be able to answer such a question directly, we are interested in enabling
such a search to the extent that today’s technology allows.

The historian would begin by finding a digital library that includes marked-up versions of
historical documents, such as the Model Editions Partnership’s Civil-War era documents
[Chesnutt (1995)]. He would then enter the query, “Find all government officials during the
years 1860-1865,” and be would then be presented with a list of all the government officials the
system knows about. The system knows about government officials because the markup
includes tags that identify government documents, and in one of our historical ontologies we
would have a rule that says, “the author of a government document is a government official.”
There are similar rules for names that appear in tags that signify senders, recipients, signatures,
etc. The system can also infer dates of service for these officials from the dates of the
documents.

The power of our approach comes from the fact that it is fairly easy to specify such rules and
then capitalize on the data already in the marked-up documents. Thus, rather than enumerating
all the government officials during the Civil War, we specify the rules and let the system gather
that information for us. Of course, the information may be incomplete; for example, if the library
does not include documents in which a particular government official is mentioned in the right
context (i.e., as content of a author, recipient, etc. tag), the system will not know that person is a
government official.

The user's next step is to pick a person from the list of government officials and ask the system
to display the information known about that person. This will show the user the kind of
information the system keeps about government officials in the form of the labeled links to this
information, e.g., "author-of”, “recipient-of”, “sender-of”, “member-of", etc. The historian
can ask to follow any of these links, such as the "author-of" link, after which he will be presented
with a list of all the documents of which this person is the author. The documents are listed
along with their most specialized parent (i.e. the parent concept lowest in the concept taxonomy),
so the user will see a list of document titles and document types; for example:

PERSON-102: Andrew Johnson AUTHOR-OF:

DOCUMENT-23: Public Address to Baltimore
MEMO-54: Message to Lincoln
LETTER-32: Letter to Mrs. Johnson

If the user selects LETTER-32, he sees all the information that the system keeps about such a
document, including links such as "has-author" and "has-recipient," and all the parent concepts
(the list view above reveals only one parent, but most instances will have many parent concepts
inherited down through the taxonomy from all its immediate parents). In this example, the
concept is an instance of a LETTER, PERSONAL-DOCUMENT, HISTORICAL-
DOCUMENT, DOCUMENT, MEP-DOCUMENT, and several others.

Now, assume the user selects the PERSONAL-DOCUMENT concept. All concepts in the
ontology have brief natural language descriptions, so the user will see something like this
(slightly abridged here due to space constraints):

Concept PERSONAL-DOCUMENT:
 Comments: "A Personal-Document is a document, usually a letter or diary
entry, that was considered part of the author's personal life. This
concept was originally disjoint with PROFESSIONAL-DOCUMENT, however we have
found several exceptions and removed that restriction."
 Parents: DOCUMENT
 Ancestors: DOCUMENT OBJECT LIBRARY-THING

The user now has learned all the information he needs to form a more specific query, which is
essentially, "Find all the PERSONAL-DOCUMENTs written by GOVERNMENT-
OFFICIALs in the years 1860-1865 whose recipients were not GOVERNMENT-
OFFICIALS." The result will provide all documents the user is looking for, and finishing the
research will involve reading through these documents.

In the future, collaborations with user-interface groups will lead to the ability to deliver an entire
document composed of the results of the query. Such a dynamic document could be pruned on-
line as the user discovers parts (individual letters) that do not match his criteria.

Eventually the scenario above would be augmented by a powerful interface that assists users with
the query language. Until that time, and probably even after, we expect that trained librarians
who understand the representation and the query language will assist users with this system.
Note that, of course, modern communication technology, from phones to chat rooms to 3D web
spaces, imply that the human assistance does not require proximity.

6.2 Semantic Consistency Checking

While SGML-based tools for checking the syntax of the markup in documents exist, our tools
add the ability to check the semantic consistency of the markup.

Our ontology can express certain constraints beyond those that are purely syntactic. For
example, we have a knowledge-based constraint that says, "Fictional characters must have names
of type FICTIONAL." Such a simple yet useful rule could catch the following inconsistency in
the markup:

....<name type=fictional>Asmodeus</name>...

....<name type=person>Asmodeus</name>...

This sequence of tags in a marked-up text will generate an error during translation to the
knowledge-base, because it would imply that the instance represetning the character Asmodeus is
to be classified as both a PERSON and a FICTIONAL-CHARACTER. Because these concepts
are defined to be disjoint in the ontology, an error condition is raised. This type of simple
inconsistency occurs frequently in marked-up texts, especially when large amounts of text are
encoded by different people. Such inconsistencies cannot be detected using SGML validation
tools. As a result, thee errors often go undetected, or are left to be found and corrected via hand-
validation. Detection of these kinds of errors at the time of text entry helps to ensure the
accuracy of the markup and reduce the time and cost of hand validation.

Other types of errors, such as misspelled names, not detected automatically, but rather are made
more obvious because of the way the data is organized and accessed. For example, using the rule
mentioned previously that says, roughly, "The sender and recipients of all government
documents are government officials," and a document with the recipient name spelled wrong, i.e.:

...<sender><name type=person>Andrew Jonson</name></sender>...

a new government official named "Andrew Jonson" will be created. During browsing, the
results of a query to search for “all government officials during the years 1860-1865,” would
include an instance representing Andrew Jonson. By tracing the source of the person (easy to
do because of the links in the knowledge base—see Figure 6), it is easy to detect that the name
has been misspelled.

6.3 DTD and Markup Manipulation

The use of a class structure and the ability to automatically classify concepts makes it possible to
manipulate entire documents or document sets to reflect systematic changes to the DTD, i.e. to
actually alter the markup. For example, in the previous section we introduced a “virtual tag”
called GOVERNMENT-OFFICIAL: this is not a tag defined in the DTD, but rather a new sub-
category of PERSON introduced in the knowledge-based representation of a marked-up
document. If it were later decided to update the DTD to add this new tag, it would be simple to
regenerate all the marked-up documents to include the proper usage of the updated DTD.

The use of the class hierarchy also makes it possible to manipulate sets of tags as one group.
For example, since there is a hierarchy of paragraph-like elements in our CES base ontology, we
could request that all paragraph-like tags be removed from the markup in order to generate a
minimally marked-up document.

The existence of a class hierarchy corresponding to the tags also has implications for integrating
texts that were encoded using different DTDs. When there is a correspondence between two tags
(such as the <PERSNAME> and <NAME TYPE=PERSON>), a parent class can be created that
subsumes each. Queries over sets of documents with different encodings can thus be unified by
having the queries use the subsuming class. For example, a PERSON-NAME-TAG class might
be created that subsumes (is the parent of) the concept PERSNAME (generated from one DTD)
and the concept NAME-PERSON (generated from the second DTD). Searches for instances of
PERSON-NAME-TAG will then find instances of either.
Recognition of general classes that subsume similar tags from multiple DTDs is not automatic.
The similarities must be identified and reasonable choices for subsuming tags must be made.
We are just beginning to explore this area in depth.

7 Conclusion
The representation of SGML documents in a knowledge representation system such as
CLASSIC offers the potential to provide considerably more powerful query and retrieval
capabilities than have previously been available. In particular, it will enable the manipulation of
and access to elements within documents on the basis of semantic rather than purely syntactic
(structural) properties. Classes of elements can be accessed, and knowledge of the DTD is not
essential for constructing queries. Further, CLASSIC's inferencing capabilities can provide
access to information that is not directly retrievable from the document structure, upon which all
current systems rely.

The representation of SGML documents in CLASSIC may also have repercussions for DTD
design. We have found that wide variations in the kinds of information represented by elements,
attributes, and tag content often occur, even within the same DTD. However, the formal
representation of elements, attributes, and content as CLASSIC objects demands consistency in
their use within the DTD. The development of a set of principles for DTD design is a
desideratum among the encoding community; we are looking into the ways in which
formalization of DTDs in CLASSIC can contribute to this development.

At the same time, the use of a system such as CLASSIC allows for greater flexibility in tagging
text. For example, for names of people, the encoder can use the general NAME tag--or even
more generally, RS (referring string)--or provide a very precise encoding using PERSNAME
with FIRSTNAME, LASTNAME, etc. elements inside. Once represented in CLASSIC, these
objects can be both recognized as members of the class person-name and accessed and
manipulated as such. This frees the encoder to choose an encoding for each name that is
appropriate; there is no need for absolute consistency to enable the semantic identity of the two
elements to be recognized. More generally, it allows precise tag semantics to be instantiated in a
system external to the encoded text.

Finally, one of the principal benefits of a formal system is that violations of the formalism are
easy to detect automatically. SGML has always provided a formal representation for the syntax
(content models) of tag sets, and violations of this syntax are immediately flagged, which
provides some assistance in catching errors during markup. However, SGML provides no
support for detecting semantic errors. As a result, groups using DTDs as the basis for markup
of documents have found it necessary to adopt software engineering principles for documenting
the proper usage of tags by encoders (see, for example, Flanders [1998]). This results in the
creation of extensive documentation with which encoders must be familiar in order to make full
use of the desired semantics. This support is informal, relying on human memory and other
cognitive factors relating to the way the usage information is indexed. As a result, encoders do
not always use the right tags. By augmenting the formal syntax of the DTD in SGML with a
formal semantics in CLASSIC, some of these problems can be alleviated. Much of the intended
usage for a tag can be represented in such a way that consistency checking will detect many
cases of inappropriate or under-specified tags. This is no panacea, but it does go a long way
toward providing some much-needed support for encoders.

Acknowledgments

The present research has been partially funded by US NSF RUI grant IRI-9413451 and AT&T Bell Laboratories.
The authors would like to acknowledge the contribution of Greg Priest-Dorman and Tim McGraw to our work,
and thank Elli Mylonas and Allen Renear for their helpful comments and patience. Finally, we would like to
thank the anonymous reviewers for their helpful and in-depth comments.

References

Artale, A., Franconi, E., Guarino, N., Pazzi, L. (1996) Part-Whole Relations in Object-Centered Systems: An
Overview. Data and Knowledge Engineering Journal. 20 . pp 347-383. Elsevier.

Blake, G.E., Consens, M., Davis, I.J., Kilpelainen, P., Kuikka, E, Larson, P.-A., Snider, T., Tompa, F.W.
(1997). Text/Relational database management systems: Overview and proposed SQL extensions. Available at
http://solo.uwaterloo.ca/trdbms/.

Borgida, A. (1998) On the Relative Expressiveness of Description Logics and Predicate Logics. To appear,
Artificial Intelligence Journal. Available at ftp://cs.rutgers.edu/pub/borgida/dl-vs-fol.dvi.Z.

Brachman, R. (1983) What is-a is and isn't. IEEE Computer. October, 1983. pp 30-36.

Brachman, R., Schmolze, J. (1985). An overview of the KL-ONE Knowledge Representation System.
Cognitive Science. 9 (2). Pp. 171-216.

Brachman, R, Borgida, A., McGuinness, D., and Resnick, L. The CLASSIC Knowledge Representation System
(1989). Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI). Morgan-
Kaufman.

Chesnutt, D. (1995) The Model Editions Partnership. D-Lib Magazine. November, 1995. Available at
http://www.dlib.org/.

Flanders, J. (1998)The Brown University Womens Writers Project . http://www.wwp.brown.edu/

Harie, S., Ide, N., Le Maitre, J., Murisasco, E., Véronis, J. (1996). SgmlQL - An SGML Query Language.
Proceedings of SGML'96, 127.

Ide, N. (1998a). Corpus Encoding Standard: SGML Guidelines for Encoding Linguistic Corpora. Proceedings of
the First International Language Resources and Evaluation Conference (LREC), Granada, Spain, 463-470. CES
Documentation and DTDs available at http://www.cs.vassar.edu/CES/.

Ide, N. (1998b) Encoding Linguistic Corpora. Proceedings of the Sixth Workshop on Very Large Corpora
(WVLC6), Montréal, Canada, 9-17.

Minsky, M. (1981). A Framework for Representing Knowledge. Mind Design. MIT Press, 95-128.

Patel-Schneider, P., Swartout, B. (1993) Description Logic Knowledge Representation System Specification.
Fromthe KRSS group of the ARPA Knowledge Sharing Effort, available at http://dl.kr.org/dl/.

Simons, G. (1997). Using architectural forms to map TEI data into an object-oriented database. Proceedings of
TEI-10.

Welty, C. (1996). Intelligent Assistance for Navigating the Web. Proceedings of the 1996 Florida AI Research
Symposium. AAAI Press.

Welty, C.. (1998). The Ontological Nature of Subject Taxonomies. Proceedings of the 1998 International
Conference on Formal Ontology in Information Systems. IOS Press “Frontiers in Artificial Intelligence and
Applications” series.

